El clima en Neuquén

icon
28° Temp
23% Hum
La Mañana científicos

Quiénes son los científicos de Google Deep Mind que ganaron el Nobel de Química

Se trata de Davis Baker, John Jumper y Demis Hassabis, quienes descifraron el código de las proteínas. El alcance de sus hallazgos.

La Real Academia Sueca de Ciencias entregó el Premio Nobel de Química 2024 a los científicos estadounidenses David Baker y John Jumper y el británico Demis Hassabis cuyos descubrimientos han permitido a la ciencia adentrarse en un nuevo territorio en el estudio, la predicción y creación de proteínas mediante el uso de inteligencia artificial.

Esta entrega del Nobel de Química tiene un vínculo estrecho con Google: Hassabis, es el fundador de Google DeepMind, y Jumper, quien dirige el desarrollo del software de predicción de proteínas AlphaFold de la compañía, comparten el premio junto al bioquímico Baker, de la Universidad de Washington.

Los científicos soñaron con comprender y dominar las proteínas. Estas moléculas complejas son esenciales para prácticamente todos los procesos biológicos, desde la construcción de los tejidos del cuerpo hasta la regulación de las reacciones químicas que nos mantienen vivos.

Premio Nobel de Química

El jurado del Comité del Nobel destacó que los galardonados lograron descifrar el enigma de las complejas estructuras de las proteínas, consideradas herramientas químicas esenciales para la vida.

La inteligencia artificial es una fuerza transformadora en varios campos, pero su impacto en la química y la biología es hoy especialmente revolucionario. Por un lado, Hassabis y Jumper utilizaron esta tecnología para resolver un problema que desafió a los científicos durante más de 50 años: la predicción precisa de la estructura tridimensional de las proteínas a partir de su secuencia de aminoácidos.

Proteínas.jpg

Por otro lado, Baker fue un paso más allá, no solo comprendió estas estructuras, sino que logró diseñar proteínas completamente nuevas con funciones innovadoras.

Los tres científicos se desempeñan en instituciones de renombre internacional: el estadounidense Baker es profesor en la Universidad de Washington en Seattle, el británico Hassabis, cofundador y director ejecutivo de Google DeepMind, obtuvo su doctorado en neurociencia por el University College London. Por su parte, el estadounidense Jumper, investigador sénior también en Google DeepMind, completó su doctorado en la Universidad de Chicago.

La importancia de las proteínas: herramientas químicas de la vida

Las proteínas son moléculas que desempeñan una gran variedad de funciones dentro de los organismos vivos. Están formadas por cadenas de aminoácidos, de los cuales existen 20 tipos diferentes que pueden combinarse en una infinidad de maneras.

Estas cadenas se pliegan en formas tridimensionales únicas, y su estructura es clave para determinar su función. Algunas proteínas son los bloques constructores de los músculos, la piel o los órganos, mientras que otras actúan como enzimas, catalizando las reacciones químicas que hacen posible la vida.

Demis Hassabis. Nobel Química.jpg

Predecir cómo se pliega una cadena de aminoácidos en su estructura tridimensional ha sido uno de los grandes desafíos de la bioquímica. Aunque se sabe que la secuencia de aminoácidos de una proteína determina su estructura, la cantidad de combinaciones posibles es tan vasta que, si una proteína se plegara de forma aleatoria, tardaría más que la edad del universo en encontrar su estructura final. Este problema, conocido como la paradoja de Levinthal, ha desconcertado a los científicos durante décadas.

Hassabis comenzó su carrera como prodigio del ajedrez y desarrollador de videojuegos, pero luego se enfocó en la inteligencia artificial y la neurociencia, para ello cofundó en 2010 la empresa DeepMind, que fue adquirida por Google en 2014 tras su éxito en desarrollar modelos de IA.

Uno de los mayores desafíos fue mejorar AlphaFold, su sistema de predicción de proteínas. Jumper, físico teórico con experiencia en simulación de proteínas, se unió a DeepMind en 2017 y propuso mejoras clave, lo que permitió a ambos codirigir el avance definitivo del modelo.

Gracias al modelo de IA llamado AlphaFold2, lograron predecir con una precisión sorprendente la estructura de casi todas las proteínas conocidas, un total de más de 200 millones.

El impacto de este logro es enorme: ahora, en lugar de esperar años para obtener la estructura de una proteína, los científicos pueden predecirla en cuestión de minutos. Esto abre la puerta a un sinfín de aplicaciones prácticas, desde el diseño de nuevos medicamentos hasta la creación de materiales biocompatibles.

Nobel de Química.jpg

Baker y la creación de nuevas proteínas

Mientras que Hassabis y Jumper transformaron la manera en que se logra predecir las estructuras de las proteínas existentes, el trabajo de Baker se centra en la creación de proteínas nuevas. Tradicionalmente, los científicos han modificado proteínas naturales para mejorar sus funciones o adaptarlas a nuevas tareas, como descomponer sustancias peligrosas o actuar como herramientas en procesos industriales.

Para ello Baker usa métodos computacionales avanzados, el científico desarrolló un software llamado Rosetta, que puede diseñar secuencias de aminoácidos para generar proteínas con estructuras específicas.

Te puede interesar...

Lo más leído

Leé más

Noticias relacionadas

Dejá tu comentario